Big Data大數據的獲利模式》推薦序 

當商業智慧隱藏在雲深不知處

文/楊千

  巨量資料是個必然趨勢。

  所謂巨量資料(亦稱為海量資料、大數據),指的是在以往一般技術不容易管理但現在已能有效儲存、分析的大量資料。

  自從有了網際網路,資料的產生已不是各個組織的內部活動所產生的,而是包括了跨組織的各項活動記錄,更包括了數以億計的人類在網路上各自產生及互動的資料;在工具使用上除了傳統電腦、平板、智慧型手機、以及各項道路監視器、環境監控數據設備。

  從中國的歷史上來看,資料的產生、儲存、傳遞,講的是「字」。我們的祖先結繩記事也好,用龜甲牛骨刻下所謂的甲骨文也好,都是費時費力的。到了用竹簡記事,也記不了太多的字。以前的人說「學富五車」是形容書讀很多的意思;然而,如果以尚未發明印刷術的眼光來看,「五車」的竹簡,大概指的是《論語》已經讀了好幾篇,快要讀《大學》《中庸》。

  有了電腦之後,早年的資訊科技,不論是資料的產生、儲存、傳遞,講的是K(Kilo、仟、十的三次方,或二的十次方)。到了1990年代,講的是M(Mega、Million、百萬、十的六次方,或二的二十次方)。進入二十一世紀,2000年左右,講的是G(Giga、Billion、十億、十的九次方,或二的三十次方)。現在,我們講的是T(Tera、Trillion、萬億、兆、十的十二次方,或二的四十次方)。

  由此可見,資料的產生、儲存、傳遞真的進步太多了。

  所以,我的博士班學生畢業的時候,只要一片光碟,就能把他們所有讀過、寫過的文章全部備份起來,非常輕便(卻也很沒成就感)。

  鑑往知來,如果資訊科技進步繼續下去,我們會從T(tera)一路走到P(petra、1015)和E(exa、1018)的世界(TPE也剛好是台北在國際航空的代號──桃園國際機場)。

  英國Centrica電力公司可以每三十分鐘透過網路讀取用戶智慧電錶一次,每天抄電錶四十八次,它能對用戶的用電行為觀察得更多更深入,甚至分析之後能對客戶行為有更精準的預測,可以調節不同用電需求的輸配電電路。每天抄錶四十八次,一年就產生1T的資料。

  1970年代,10M的磁碟機要40萬台幣,可以買當時的豪宅一棟;2000年左右,2G隨身碟(20010M)約2萬台幣,可買當時的小噸數窗型冷氣機一台;現在(2013年),128G(64個2G、12800個10M)的隨身碟,新台幣2,388元即可入手,這個價格可以讓一對情侶到五星級飯店的自助餐廳用餐一次。

  在資訊科技進步的軌跡上,我們不只已看到巨量資料的應用,我們更確信它的普及是個必然趨勢。

  在數學符號上就是一個國中生寫下「十的二十次方」不會有甚麼感覺,它就是1的後面跟上20個零。但是,在實體世界裡全地球所有海灘的沙粒總數大約就是這麼多,是很多很多的,對我們個人來說就是無限大,在佛經中則稱為「恆河沙數」。

  小孩子不容易忘記,是因為他的記憶內容少,比較容易找到記得的事物;大人容易忘記,是因為記憶內容較多,卻沒有用心建立索引目錄分類、缺少工具與方法,或是傳輸線老化接觸不良,不容易找到曾經記憶過的事物。

  如果資料少,當然容易找到過去的紀錄;如果資料多,當然增加極大的困難;更何況,要分析巨量資料中的數不盡的關係與內涵,絕對不是單純的正比關係。

  如果在一家企業內部進行資料探勘應用,我們稱之為商業智慧(BI, Business Intelligence),這是許多公司知識管理的範疇,也已經有二、三十年的歷史;台灣資訊管理相關科系都有在資料庫相關課程裡探討。許多像SAP、Oracle、IBM等公司都提供類似的軟體工具。

  但是,到了巨量資料一路往TPE走,許多智識都隱藏在雲深不知處,確實是能夠探勘出有價值的資訊,變成更有必要卻更困難,因此需要更有競爭力。

  本書提出許多實際成功應用的案例,列出相關互動隱私及安全的議題,是一本有相當廣度的巨量資料相關讀物,很適合關心未來的知識份子閱讀。 

(本文作者為國立交通大學經營管理研究所教授)

 

QB1109 Big Data大數據的獲利模式

 

 

 

, , , , , , , ,
創作者介紹

經濟新潮社EcoTrend官方部落格

EcoTrend 發表在 痞客邦 PIXNET 留言(0) 人氣()